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1. Introduction

Over the last decade, tremendous progress has been made in establishing and understanding

d = 4, N = 2 heterotic-type II duality, which connects the heterotic string compactified

on K3 × T2 with compactifications of type IIA theory on K3-fibrations. One of the most

fruitful approaches has been to compute the low energy effective action for models with

explicitly known heterotic and type II realizations. More precisely, the 4d effective action

of these N = 2 compactifications has been known for a long time to contain a series of

BPS protected higher-loop terms of the form

S ∼
∫

F (g)(t, t̄)T 2g−2R2 + · · · , (1.1)
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where R is the Riemann tensor, T the graviphoton field strength, and the couplings F (g)

are amplitudes of the topological string on the internal Calabi-Yau [1, 2]. On the heterotic

side, these amplitudes appear at 1-loop [3] and are therefore in general accessible to com-

putation [4 – 7]. The result can be mapped to the type II side, yielding striking predictions

in enumerative geometry.

The amplitudes F (g) are also intriguing from a mathematical point of view, as they

involve interesting classes of automorphic functions. Furthermore, the Higgs transitions on

the heterotic side correspond to geometric transitions between the corresponding Calabi-

Yaus on the type II side. A more precise picture of how the heterotic moduli spaces are

connected might therefore provide some insight into the web of type II vacua.

Until now, most explicit comparisons between heterotic and type II models have been

restricted to cases with a small number nv of massless Abelian vector multiplets, namely

nv = 3, 4, 5. These vector multiplets are the graviphoton, the heterotic dilaton S, one or

two (nv = 4) moduli T,U from the compactification torus, and if nv = 5, one Wilson line

modulus V . However, by now there is a myriad of conjectured heterotic-type II pairs with

higher numbers of vector multiplets waiting to be analyzed.

In [8], the authors obtained chains of heterotic-type II duals by compactifying the

heterotic string on K3 × T2 in various orbifold realizations. In each chain, subsequent

models are connected by a sequential Higgs mechanism reducing the number of generic

Wilson line moduli by one. K3 is realized as an orbifold T4/ZN , N = 2, 3, 4, 6 and the ZN

is simultaneously embedded in the gauge connection in a modular invariant way. For the

last models in the chains, the candidate type II duals can be explicitly constructed.

The classical vector multiplet moduli space of compactifications with k = nv−4 Wilson

lines is given by the special Kähler space

SU(1, 1)

U(1)
× SO(2 + k, 2)

SO(2 + k) × SO(2)
, (1.2)

where the first factor corresponds to the dilaton and the second to the torus and Wilson

line moduli. The T-duality group, under which the vector multiplet couplings have to

transform as automorphic functions, is SO(2 + k, 2; Z) [9 – 11].

For the SO(2, 2; Z) case with four vector multiplets, i.e. the well-known STU model,

the higher derivative couplings have been computed in [5]. They can be expressed in terms

of expansion coefficients of ordinary modular forms. The case with five vector multiplets

(one Wilson line) has been studied at the level of prepotential and F (1) in [12]. This case

is somewhat special, as the T-duality group is here SO(3, 2; Z) ∼= Sp(4, Z) [11], and the

corresponding automorphic functions are given by Siegel modular forms [11]. The effective

couplings can be expressed in terms of Jacobi forms of index one, yielding a prescription

how to split off the part depending on the Wilson line modulus from the gauge lattice.

The generic case involves more general automorphic forms. However, we can define a

splitting procedure analogous to the one in [12], and the split lattice sum can be explicitly

expressed in terms of ordinary Jacobi Theta functions. Once this split is determined, we

can use the technique of lattice reduction [13] to explicitly compute higher-derivative F-

terms for heterotic N = 2 compactifications with an arbitrary number of Wilson lines.
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The final result involves the q-expansion coefficients of the moduli independent Higgsed

part of the lattice sum. Even though the computation is done at the orbifold point, the

results are fully valid at generic points of K3 moduli space, since the couplings F (g) only

depend on vector multiplets and therefore cannot mix with the K3 moduli, belonging to

hypermultiplets.

While the formalism can be applied to almost any symmetric ZN orbifold limit of K3,

we mainly focus on the dual pairs found in [8]. We compute the corresponding topological

amplitudes F (g) in closed form. For genus zero, our results agree with the numbers of

rational curves found on the type II side wherever those are known [14]. The present

computation extends previous work on threshold corrections for models with a single Wilson

line [15, 12, 16], and also provides a more explicit realization, extended to higher genus, of

the general results of [17].

This paper is organized as follows. In section 2, we review heterotic compactifications

with N = 2 supersymmetry and the Higgs chains of [8]. In section 3, we explain how to

compute partition sums and higher derivative F-terms in general heterotic orbifold setups.

Section 4 introduces the lattice splits in the presence of Wilson lines. A general expression

for the amplitudes F (g) in the presence of Wilson lines is derived. In section 5, we use our

results to extract geometric information on the dual Calabi-Yau manifold. This provides

a highly nontrivial check of our computation in those cases where instanton numbers are

known on the type II side. Section 6 contains some concluding remarks and further direc-

tions of research. Appendix A summarizes some facts about Jacobi and Riemann-Siegel

theta functions, and appendix B reviews the Borcherds-Harvey-Moore technique of lattice

reduction. Finally, appendix C collects tables of instanton numbers for several models

discussed in the text.

2. Heterotic N = 2 compactifications

In this section, we briefly discuss the construction of heterotic N = 2 compactifications

and their matter spectrum. There are two main approaches to analyzing these models.

Section 2.1 reviews the purely geometrical approach of [18], while section 2.2 reviews the

exact CFT construction via orbifolds of [8]. Even though the two approaches are completely

equivalent, it proves very useful to keep the two in mind simultaneously, as sometimes one

is more convenient, sometimes the other. Section 2.3 reviews how these compactifications

fall into chains of models connected by a sequential Higgs mechanism [8].

2.1 The Calabi-Yau approach

Consider compactification of the heterotic string on K3× T2. In order to break the gauge

group G = E8 × E8 of the ten-dimensional heterotic string down to a subgroup G, one

gives gauge fields on K3 an expectation value in H, where G × H is a maximal subgroup

of G. Geometrically, this corresponds to embedding a H-bundle V on K3. This bundle

can be chosen to be the tangent bundle of K3, an SU(2)-bundle with instanton number∫
K3 c2(V ) = 24. This is the standard embedding, where the spin connection on K3 is

– 3 –
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equal to the gauge connection. More generally, one can embed several stable holomorphic

SU(N)-bundles Va, as long as the constraints from modular invariance

∑

a

c2(Va) = 24 c1(Va) = 0 (2.1)

are satisfied. We will here only consider embeddings of one or two SU(2)-bundles on one

respectively both E8 and write their instanton numbers according to (2.1) as (d1, d2) =

(12 + n, 12 − n).

The number of gauge neutral hypermultiplets is determined as follows [18]. There is

a universal gravitational contribution of 20, and each of the SU(Na)-bundles Va → K3

with
∫
K3 c2(Va) = A has an extra ANa + 1 − N2

a moduli, therefore we get additional 45

moduli for one and 51 for two embedded SU(2) bundles. The rank of the gauge group is

reduced by the rank of the embedded bundle, N-1. For the standard embedding, we thus

find 65 hypermultiplets and an enhanced gauge group E7 × E8, the first model in the Z2

chain in [8]. The Cartan subalgebra of E7 × E8 contains 15 generators, and there is an

extra U(1)4 from the SUGRA multiplet and torus compactification, therefore this model

has nv = 19 vector multiplets.

2.2 Exact CFT construction via orbifolds

Rather than following the approach presented above, we will here realize the heterotic

models following [8] in the so-called exact CFT construction via orbifolds. In this approach,

the K3 is realized as a ZN orbifold, while simultaneously the spin connection is embedded

into the gauge degrees of freedom. We will mainly concentrate on the ZN -embeddings given

in table 1. The orbifold ZN twist θ acts on two of the four complex bosonic transverse

coordinates as e±
2πi
N . Since we impose N = 2 SUSY, N can only take on the values

2, 3, 4, 6 [17]. The action of θ on the gauge degrees of freedom is strongly restricted by

worldsheet modular invariance. We implement it as a shift of the gauge lattice, writing for

the torus and gauge lattice sum

Z18,2[ab ] =
∑

p∈Γ18,2+aγ

e2πibγ·pq
|pL|2

2 q̄
|pR|2

2 , (2.2)

where a, b ∈ {1/N, . . . (N − 1)/N}. The shift γ ∈ Γ18,2 has to fulfill the modular invariance

and level-matching constraints [19]

8∑

i=1

γi =
16∑

i=9

γi = 0 mod 2 (2.3)

and

γ2 = 2 mod 2N. (2.4)

One then finds the possible inequivalent ZN orbifolds: There are 2 for Z2, 5 for Z3, 12 for

Z4 and 61 for Z6 [16]. Note that in those cases where the same type of shift is modular

invariant for different N, those models are equivalent as far as the topological amplitudes
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Z2 γ1=(1,-1,0,0,0,0,0,0);

γ2=(0,0,0,0,0,0,0,0) SU(2) × E7 × E′
8 n=12

Z3 γ1=(1,1,2,0,0,0,0,0);

γ2=(1,-1,0,0,0,0,0,0) SU(3) × E6 × U(1)′ × E′
7 n=6

Z4 γ1=(1,1,1,-3,0,0,0,0);

γ2=(1,1,-2,0,0,0,0,0) SO(10) × SU(4) × E′
6 × SU(2)′ × U(1)′ n=4

Z6 γ1=(1,1,1,1,-4,0,0,0);

γ2=(1,1,1,1,1,-5,0,0) SU(5) × SU(4) × U(1) × SU(6)′ × SU(3)′ × SU(2)′ n=2

Table 1: Embeddings of the spin connection in the gauge degrees of freedom

0 1 1 0 0 0 0 0 α1

0 0 -1 1 0 0 0 0 α2

0 0 0 -1 1 0 0 0 α3

0 0 0 0 -1 1 0 0 α4

0 0 0 0 0 -1 -1 0 α5

0 0 0 0 0 0 1 1 α6

-1
2 -1

2
1
2

1
2

1
2

1
2 -1

2 -1
2 α7

0 0 0 0 0 0 1 -1 α8

Table 2: A simple root system for E8

F (g) are concerned. The reason for this is that they are only distinguished by the specific

orbifold realization of the K3-surface. Since the moduli of the K3 live in hypermultiplets

which do not mix with the vector multiplets, the higher-derivative couplings should be

identical for the different ZN embeddings. They can however differ if we turn on Wilson

line moduli corresponding to the gauge groups only present in the orbifold limit [17], as

will be explained in section 4.2.

Some non-standard embeddings, along with their perturbative gauge group, are given

in table 3. These groups are easily read off from the simple root system for E8 given below,

table 2. The unbroken group is generated by the roots αi invariant under the shift γ, i.e.

fulfilling

e
2πiγ·αi

N = 1. (2.5)

In the first embedding in table 3, the invariant roots on the first E8 are the 126

roots of E7, generated by the roots α2, . . . , α8. One realization is given in table 2. For

a general ZN embedding, the gauge group from the first E8 would then be U(1) × E7.

For N = 2, γ itself is also a root, orthogonal to the others, fulfilling (2.5), and the U(1)

is enhanced to an SU(2). On the second E8, the invariant roots are the roots of SO(14)

α1, . . . , α6, α8, and an extra root (1,−1, 06) such that the unbroken gauge group is SO(16).

The second embedding is obviously analogous, only in this case N = 3, therefore (1,−1, 06)

is not an invariant root anymore. For the left-hand side of the third embedding, the
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2 −1 0 · · · 0

−1 2 −1 0 0

0 −1 2 −1 0 0
... 0 −1 2 −1 0 0

0 −1 2 −1 0 −1

0 −1 2 −1 0

0 −1 2 0

0 · · · −1 0 · · · 2





Figure 1: Cartan matrix of E8

unbroken roots are α1, (1,−1, 06), and the second system, orthogonal to the first α3, . . . α8,

yielding a perturbative gauge group SU(3) × E6. On the second E8, the unbroken roots

are α1, . . . , α7, (
1
2 ,−1

2 ,−1
2 ,−1

2 ,−1
2 ,−1

2 , 1
2 ,−1

2), forming the Dynkin diagram of SU(9). The

other examples work out similarly. Note that each of these realizations breaks the original

gauge group E8×E8 to a different rank 16 subgroup, containing a nonabelian rank r group

G and a U(1)16−r that may be enhanced as in the example above. However, this latter

factor is only present in the orbifold limit; for a smooth K3, the gauge group consists merely

of G.

The perturbative gauge group G × G′ can subsequently be spontaneously broken to

a subgroup G1 ⊂ G via maximal Higgsing, as explained in section 2.1 within the Calabi-

Yau approach of [18]. This subgroup depends on the embedding γ only via its instanton

numbers: For the standard embedding with n = 12, there are no instantons on the second

E8 and the gauge group E′
8 can not be broken at all. For the cases n = 0, 1, 2, complete

Higgsing is possible. For n = 3, 4, 6, 8, there are too few hypermultiplets on E′
8 that

could be used for Higgsing, and G′ can only be broken to a terminal subgroup G1 =

SU(3),SO(8), E6, E7 [16]. Once again, we consider the standard Z2 orbifold as an example.

The hypermultiplets in the untwisted (θ0) and twisted (θ1) sectors transform under E7 ×
SU(2) in the following representations:

(56, 2) + 4(1, 1) (untwisted, θ0)

8 ((56, 1) + 4(1, 2)) (twisted, θ1).
(2.6)

We can now Higgs the SU(2) giving vevs to three scalars, and we are left with 10 hy-

permultiplets transforming in the 56 of E7 and 65 singlet hypermultiplets, as advertised

in section 2.1. We can then break E7 further by sequential Higgs mechanism. Since the

instanton numbers corresponding to this embedding are (24, 0), we can not break the E′
8

from the second E8 lattice at all. A complete classification of orbifold limits of K3 along

with their instanton numbers can be found in [16].

2.3 Chains of dual models and the sequential Higgs mechanism

Once one has chosen a modular invariant embedding of SU(N) bundles, and maximally

Higgsed the gauge group on the E8 lattice where the embedding has the lower instanton

– 6 –
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Z2 (1,−1, 0, 0, 0, 0, 0, 0);

(2, 0, 0, 0, 0, 0, 0, 0) SU(2) × E7 × SO(16)′ n = 4

Z3 (2, 0, 0, 0, 0, 0, 0, 0);

(2, 0, 0, 0, 0, 0, 0, 0) U(1) × SO(14) × U(1)′ × SO(14)′ n = 0

Z3 (1, 1,−2, 0, 0, 0, 0, 0);

(−2, 1, 1, 1, 1, 1, 2, 1) SU(3) × E6 × SU(9)′ n = 3

Z4 (3,−1, 0, 0, 0, 0, 0, 0);

(0, 0, 0, 0, 0, 0, 0, 0) SU(2) × U(1) × SO(12) × E′
8 n = 12

Z6 (3,−1,−1,−1,−1,−1, 1, 1);

(3,−3, 2, 0, 0, 0, 0, 0) U(1)2 × SU(7) × U(1)′ × SU(2)′2 × SO(10)′ n = 2

Table 3: Other ZN embeddings of the spin connection.

number, one can perform a cascade breaking on the remaining gauge group along the chain

E8 → E7 → E6 → SO(10) → SU(5) → SU(4) → SU(3) → SU(2) → (nothing). For the

example of the standard Z2 orbifold, this goes as follows.

Starting with the (65,19) model with E7 × E8 symmetry remaining after the gauge em-

bedding, one can move to a point in moduli space where the E7 gauge symmetry is

restored. Under the maximal subgroup E6 × U(1) ∈ E7, the 56 of E7 decomposes as

56 = 27 + 27 + 1 + 1. At this point, there are 10 56, therefore 20 E6 singlets charged

under the U(1). We now give a generic vev to the adjoint scalars in the unbroken vector

multiplets, thereby giving masses to all hypermultiplets charged with respect to E6, and

at the same time breaking E6 to its maximal Abelian subgroup U(1)6. Using one scalar to

Higgs the U(1), we get 19 extra gauge singlet fields: the new spectrum is (84, 18), the sec-

ond model in the corresponding chain in [8]. We can then move to a point in moduli space

where the U(1)6 is enhanced to E6 and continue this procedure until no gauge symmetry

remains on this lattice. In this way, one easily finds a chain of models with characteristics

(nh, nv) [8]

(65, 19), (84, 18), (101, 17), (116, 16), (167, 15), (230, 14), (319, 13), (492, 12) (2.7)

The same mechanism can be applied to the other embeddings in table 1. For the Z3 orbifold,

n = 6, therefore we can maximally Higgs on the second lattice down to E6. On the first E8

lattice, we first Higgs down to the rank-reduced subgroup and then start cascade breaking

as explained above. The result is a chain E6 → SO(10) → · · · → SU(2) → 0 passing

through models with characteristics

(76, 16), (87, 15), (96, 14), (129, 13), (168, 12), (221, 11), (322, 10). (2.8)

For the Z4 orbifold, n = 4, maximal Higgsing leaves an SO(8) on the second lattice and

the embedding of the spin connection leaves a rank-reduced subgroup SU(4) on the first.

The resulting chain reads

(123, 11), (154, 10), (195, 9), (272, 8). (2.9)

– 7 –
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The Z6 orbifold in table 1, finally, has n = 2 and therefore allows for complete Higgsing.

The rank-reduced subgroup is SU(5), Higgsed via the chain

(118, 8), (139, 7), (162, 6), (191, 5), (244, 4). (2.10)

The last four models in each chain have candidate type II duals, i.e. known K3 fibrations

with the right Betti numbers. It is interesting to note that on the type-II side, the cascade

breaking procedure corresponds precisely to moving between moduli spaces of different

Calabi-Yau manifolds. Indeed, as pointed out in [18], this is strikingly similar to the

specific type-II process described in [20].

3. Higher derivative couplings for Zn orbifolds

We will consider here the E8×E8 formulation of the 10 dimensional heterotic string, where

the gauge degrees of freedom are encoded by 16 left-moving bosons, and compactify it on

K3 × T2, yielding another two left- and two right-moving bosons. These fields take their

values on an even self-dual lattice of signature (18, 2) that will be denoted by Γ18,2. One

can identify Γ18,2 as obtained from a Euclidean standard lattice by an SO(18, 2) rotation.

The moduli space of inequivalent lattices is therefore given by

SO(18, 2)

SO(18) × SO(2)
. (3.1)

This homogeneous space can be parametrized following [4, 17] by

u(y) =

(
~y, y+, y−; 1,−1

2
(y, y)

)
, y ∈ C17,1 (3.2)

with y2 > 0, (y2, y2) < 0 and inner product

(x, y) = (~x, ~y) − x+y− − x−y+. (3.3)

The right-moving components of a vector in Γ18,2 with respect to a vector

(~b,m−, n+,m0, n0) in the fixed Euclidean standard lattice are then denoted by pR = p·u(y),

and we have
p2

L − p2
R

2
=

1

2(y2, y2)

(
~b ·~b + m−n+ + m0n0

)
, (3.4)

p2
R

2
=

−1

2(y2, y2)

∣∣∣∣~b · ~y + m+y− − n−y+ + n0 +
1

2
m0(y, y)

∣∣∣∣
2

, (3.5)

The general expression for F (g) is given by [3, 21, 7]

F (g) =
1

Y g−1

∫

F

d2τ

τ2

1

|η|4
∑

even

i

π
∂τ

(
ϑ[αβ ](τ)

η(τ)

)
Z int

g [αβ ], (3.6)

where

Z int
g [αβ ] = 〈:

(
∂X

)2g
:〉 = PgC

int
g [αβ ]. (3.7)

– 8 –



J
H
E
P
0
8
(
2
0
0
7
)
0
2
4

Pg(q) is a one-loop correlation function of the bosonic fields and is given by [22, 3]

e−πλ2τ2

(
2πη3λ

ϑ1(λ|τ)

)2

=

∞∑

g=0

(2πλ)2gPg(q), (3.8)

and C int
g [ab ] denotes the trace over the (a, b) sector of the internal CFT with an insertion of

p2g−2
R , namely

∑

a,b

c(a, b)(−1)2α+2β+4αβ
ϑ[αβ ]ϑ[α+a

β+b ]ϑ[α−a
β−b ]

η3
· Z4,4[

a
b ] · Zg

T2 [
a
b ], (3.9)

where c(a, b) are constants ensuring modular invariance.

Note that for g=1, (3.6) is just the unregularized one-loop gravitational threshold

correction

F (1) =

∫

F

d2τ

τ2
2

(
τ2

|η|4
∑

even

i

π
(−1)2α+2β+4αβ∂τ

(
ϑ[αβ ](τ)

η(τ)

)
Ê2

12
C int

g [αβ ]

)
. (3.10)

The contribution from the bosonic (4,4) blocks reads

Z4,4[
a
b ] = 16

η2η̄2

ϑ2[1−a
1−b ]ϑ̄

2[1−a
1−b ]

(a, b) 6= (0, 0) (3.11)

while the bosons on the T2 together with the 16 bosons corresponding to the gauge degrees

of freedom contribute [17]

Zg
T2 [

a
b ] =

1

η18
e−2πiabγ2

∑

p∈Γ18,2+aγ

p2g−2
R e2πibγ·pq

|pL|2

2 q̄
|pR|2

2 . (3.12)

Using

i

4π

∑

(α,β)even

(−1)2α+2α+4αβ∂τ

(
ϑ[αβ ]

η

)
ϑ[αβ ]ϑ[α+a

β+b ]ϑ[α−a
β−b ]

η3

Z4,4[
a
b ]

|η|4 = 4
η2

ϑ̄[1+a
1+b ]ϑ̄[1−a

1−b ]
, (3.13)

one can write for (3.6)

F (g) =
1

Y g−1

∫

F

d2τ

τ2
2

τ2g−1
2 P2g(q)

∑

a,b

c(a, b)e2πiab(2−γ2)

η18ϑ[1+a
1+b ]ϑ[1−a

1−b ]

∑

p∈Γ18,2+aγ

p2g−2
R e2πibγ·pq

|pL|2

2 q̄
|pR|2

2 .

(3.14)

The constants c(a, b) can be determined by the modular invariance constraints [17]

c(0, b) = 4 sin4(πb)

c(a, b) = eπia2(2−γ2)c(a, a + b)

c(a, b) = e−2πiab(2−γ2)c(b,−a).

(3.15)

Introducing the Siegel-Narain theta function with insertion and shifts (see appendix A)

Θg
Γ(τ, γ, a, b) =

∑

p∈Γ+aγ

p2g−2
R q

|pL|2

2 q̄
|pR|2

2 eπibγ·p, (3.16)
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we can rewrite (3.14) as

F (g) =
1

Y g−1

∫

F

d2τ

τ2
2

τ2g−1
2 P2g(q)

∑

a,b

c(a, b)e2πiab(2−γ2)

η18ϑ[1+a
1+b ]ϑ[1−a

1−b ]
Θg

Γ18,2(τ, γ, a, b). (3.17)

For the special cases of N=2 compactifications with a factorized T2, the prepotential and

F (1) have been shown to be universal, i.e. independent of the specific model [22]. In other

words, they are identical for all compactifications on K3 × T2 with all Wilson lines set to

zero. Everything then only depends on the torus moduli. It is easy to see that this also

applies to the amplitudes F (g): When we set all Wilson line moduli to zero, the lattice sum

obviously factorizes as

∑

p∈Γ16,0+aγ

q
|pL|2

2 e2πibp·γ
∑

bp∈Γ2,2

q
|bpL|2

2 q̄
|bpR|2

2 , (3.18)

and we obtain

F
(g)
0WL =

1

Y g−1

∫

F

d2τ

τ2
2

τ2g−1
2 P2g(q)

∑

a,b

c(a, b)

η18ϑ[1+a
1+b ]ϑ[1−a

1−b ]

∑

p∈Γ16,0+aγ

q
p2

2 eπigγ·pΘg
Γ2,2(τ)

=

∫
d2τ2

τ2
2

τ2g−1
2 P2gΘ

g
Γ2,2

1

η24
Ω,

(3.19)

where

Ω =
∑

a,b

c(a, b)η6

ϑ[1+a
1+b ]ϑ[1−a

1−b ]

∑

p∈Γ16,0+aγ

q
p2

2 eπibγ·p. (3.20)

For modular invariance, Ω then has to be a modular form of weight (10,0). Since the spaces

of modular forms of even weight 2 < w < 12 are one-dimensional, Ω has to be proportional

to the single generator of weight 10 holomorphic modular forms E4E6. Indeed, one finds

easily

Ω =
∑

a,b

η6

ϑ[1+a
1+b ]ϑ[1−a

1−b ]

∑

A,B∈{0,1}

8∏

i=1

ϑ[A+aγi

B+bγi
] (3.21)

which can be checked to be −E4E6. An abstract proof of this identity based on 6d anomaly

cancellation can be found in [23]. We thus find that (3.19) yields precisely the expression

for the STU-model without Wilson line moduli given in [5]. This universality property is

related to the structure of the elliptic genus [22, 24].

We will now consider the nontrivial case with non-vanishing Wilson lines. The lattice

sum does not factorize completely anymore. However, it should factorize partly, into a

preserved and a Higgsed part. Indeed, it turns out that one can now write F (g) as

F (g) =
1

Y g−1

∫

F

d2τ

τ2
2

τ2g−2
2 P̄2g(q)

∑

a,b

c(a, b)e2πiab(2−γ2)

η18ϑ[1+a
1+b ]ϑ[1−a

1−b ]

∑

J

Θ̄g
J,k(τ)Φk

J [ab ](q) (3.22)

with

Θ̄g
J,k =

∑

p∈Γk+2,2
J

p̄2g−2
R q

|pL|2

2 q̄
|pR|2

2 , (3.23)
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Figure 2: E8 Higgsed completely (no Wilson lines)

where Γk+2,2
J denotes the conjugacy class J inside the lattice Γk+2,2, and Φk

J [ab ](q) is a sum

over theta functions that will be determined in the following section. Note that (3.22) is

manifestly automorphic under the T-duality group SO(2+k, 2; Z), since it has the structure

of a Borcherds’ type one-loop integral [13].

4. Wilson lines: splitting the lattice

4.1 Decompositions of the E8 lattice

Recall from section 2.3 that the sequential Higgs mechanism is realized by moving along

specific branches of moduli space, away from the generic point. This corresponds to impos-

ing constraints on the Wilson line moduli, such that at each step in the chain, the number

of free Wilson line moduli is reduced by one. The lattice then splits non-trivially into a

Higgsed part with p · y = 0 and a part depending on the remaining unconstrained moduli

from Wilson lines and the torus.

First of all, we will determine how the lattice sum of E8 behaves under decomposition

into the maximal subgroups involved in the cascade breaking. Consider the Dynkin diagram

of E8 (figure 2) and the simple root system given in table 2. In all the figures, crosses

correspond to Higgsed generators of the group, while the generators remaining in the

Coulomb phase due to Wilson lines are shown as circles. Note that as can be seen from

the labeling of the Dynkin diagram, the subgroup E7 of E8 is spanned by α2, . . . , α8, E6

by α3, . . . , α8, E5 = SO(10) by α4, . . . , α8, and so on for SU(5),SU(4),SU(3),SU(2). We

denote the simple roots of the second E8 by α′
i.

We can now turn on one Wilson line, y ∼ α1. On the other hand, turning on seven

Wilson line moduli can be encoded in the constraint α1 · y = 0. Both cases result in a split

of the lattice sum of E8 into

∑

p∈ΓE8

q
p2

2 =
∑

ni∈Z

qn2
1+···+n2

8−n1n2−n2n3−n3n4−n4n5−n5n6−n5n8−n6n7

=
∑

ni∈Z

q(n1−
n2
2

)2+ 3
4
n2

2+n2
3+···+n2

8−n2n3−···−n6n7

=
∑

j=0,1

∑

n1

q(n1−
j
2
)2

∑

n2,...n8∈Z

q
3
4
(2n2−j)2+n2

3+···+n2
8−(2n2−j)n3−···−n6n7

=
∑

j=0,1

ϑ[
j/2
0 ](2·)

∑

n2 ,...,n8

q
3
4
(2n2−j)2+n2

3···+n2
8−(2n2−j)n3−···−n6n7 .

(4.1)

Here and in the following, arguments (m·) stand for m ·τ , see appendix A. The second sum

in the last line is nothing else than the sum over the conjugacy class of E7 corresponding
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to (α1, p) = j:

(α1, p) = 2n1 − n2
!
= j ⇒ n2 = 2n1 − j

⇒ p = n1α1 + (2n1 − j)α2 + n3α3 + · · · + n8α8,

p2 =
3

2
(2n1 − j)2 +

j2

2
+ 2n2

3 − 2n3(2n1 − j) − · · ·

(4.2)

and therefore

q
j2

4

∑

n2,...,n8

q
3
4
(2n2−j)2+n2

3···+n2
8−(2n2−j)n3−···−n7n8 =

E8∑

(p,α1)=j

q
p2

2 = q
j2

4

∑

E
(1)
7

q
p2

2 . (4.3)

We can also express the above in terms of theta functions. Rewriting the exponent in the

second sum in the last line of (4.1) as a sum over p with (p, α1) = 0 i.e. as

p =

(
n1 −

j

2

)
α1 + (2n1 − j)α2 + n3α3 + · · ·n8α8

=

(
− n7

2
, n1 −

j

2
− n7

2
,−n1 +

j

2
+

n7

2
, 2n1 − j − n3 +

n7

2
, n3 − n4 +

n7

2
,

n4 − n5 +
n7

2
,−n5 + n6 −

n7

2
+ n8, n6 −

n7

2
− n8

)
,

(4.4)

we can write this sum as

∑

n2,...,n8

q
3
4
(2n2−j)2+n2

3···+n2
8−(2n2−j)n3−···−n7n8 =

∑

p∈E
(1)
7

q
p2

2 =
∑

p∈ΓE8
−j

α1
2

(p,α1)=0

q
p2

2

=
∑

N1,N3,...N8
N3+···+N8=j mod 2

a=0,1

q(N1−
j
2
− a

2
)2q

1
2((N3−

a
2
)2+···+(N8−

a
2
)2)

=
∑

N1,...N8∈Z
a=0,1
b=0,1

q(N1−
j
2
− a

2
)2q

1
2((N3−

a
2
)2+···+(N8−

a
2
)2)(−1)b(N3+···+N8−j)

=
∑

a,b∈{0,1}

ϑ[
a/2+j/2

0 ](2·)ϑ[
a/2
b/2 ]6(−1)jb.

(4.5)

We thus have decomposed the E8-lattice according to PE8 → P
E

(0)
7

P
A

(0)
1

+ P
E

(1)
7

P
A

(1)
1

,

as shown in figure 3. This split has already been constructed in [12]. Indeed (4.1) is

completely equivalent to the hatting procedure for Jacobi theta functions developed in [12]

for this particular split.

The same procedure applies when we split the lattice in other maximal subgroups.
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Figure 4: E8 with 1 Wilson line

Namely, we can decompose with respect to E8 ⊃ E6 × SU(3):

∑

p∈ΓE8

q
p2

2 =
∑

j2=0,1,2

∑

n1,n2∈Z
j1∈{0,1}

q(n1−
j1
2

)2+3(n2+
j1
2
−

j2
3

)2×

×
∑

n3,...,n8∈Z

q
2
3
(3n3−j2)2+n2

4+···+n2
8−(3n3−j2)n4−···−n6n7

=
∑

j1=0,1
j2=0,1,2

ϑ[
j1/2
0 ](2·)ϑ[

j1/2+j2/3
0 ](6·)

∑

a,b∈{0,1}

ϑ[
a/2+j2/3
b/2 ](3·)ϑ[

a/2
b/2 ]5(−1)b·j2

= P
E

(0)
6

· P
A

(0)
2

+ 2P
E

(1)
6

· P
A

(1)
2

,

(4.6)

The last relation in (4.6) follows from

∑

n3,...,n8∈Z

q6(n3−
j
3
)2+n2

4+···+n2
8−n3n4−···−n6n7 = q−

j2

3

∑

p∈ΓE8
(p,α1)=0
(p,α2)=j

q
p2

2 =
∑

E
(j)
6

q
p2

2 , (4.7)

and from the fact that E
(j=1)
6 and Ej=2

6 are equivalent. This case corresponds to 2 respec-

tively 6 Wilson lines.

Analogously, we have lattice decompositions with respect to E8 ⊃ SO(10) × SU(4) (3

or 5 Wilson lines)

∑

p∈ΓE8

q
p2

2 =
∑

j3=0,1,2,3

∑

n1,n2,n3∈Z
j1∈{0,1}

j2∈{0,1,2}

q(n1−
j1
2

)2+3(n2+
j1
2
−

j2
3

)2+6(n3+
j2
3
−

j3
4

)2×

×
∑

n4,...,n8∈Z

q
3
8
(4n4−j3)2+···+n2

8−(4n4−j3)n5−···−n6n7

=
∑

j3=0,1,2,3

∑

j1=0,1
j2=0,1,2

ϑ[
j1/2
0 ](2·)ϑ[

j2/3−j1/2
0 ](6·)ϑ[

j3/4−j2/3
0 ](12·)×

×
∑

a,b∈{0,1}

ϑ[
a/2+j3/4

0 ](4·)ϑ[
a/2
b/2 ]4(−1)b·j3

=P
D

(0)
5

· P
A

(0)
3

+ 2P
D

(1)
5

· P
A

(1)
3

+ P
D

(2)
5

· P
A

(2)
3

,

(4.8)
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Figure 5: The split E8 → SO(14) × SU(2)

and for E8 ⊃ SU(5) × SU(5) (4 Wilson lines)

∑

p∈ΓE8

q
p2

2 =
∑

j4=0,...,4

∑

j1=0,1
j2=0,1,2
j3=0,...,3

ϑ[
j1/2
0 ](2·)ϑ[

j2/3−j1/2
0 ](6·)ϑ[

j3/4−j2/3
0 ](12·)ϑ[

j4/5−j3/4
0 ](20·)·

·
∑

a,B∈{0,1}

ϑ[
a/2+j4/5

B/2 ](5·)ϑ[
a/2
B/2]

3(−1)B·j4

= P
A

(0)
4

· P
A

(0)
4

+ 2P
A

(1)
4

· P
A

(1)
4

+ 2P
A

(2)
4

· P
A

(2)
4

.

(4.9)

Note, however, that there are many other ways to decompose the lattice under other

maximal subgroups. As an example, we can decompose E8 → SO(14)×SU(2) as shown in

figure 5:

∑

p∈ΓE8

q
p2

2 =
∑

j=0,1

∑

n7

q(n7−
j
2
)2

∑

n1,...,n6,n8

q
3
4
(2n6−j)2+n2

8+n2
5···+n2

1−(2n6−j)n5−n5n8···−n7n8.

(4.10)

Denoting the lattice sum
∑

p∈ΓE8
q

p2

2 by f(τ), the splittings (4.1)-(4.9) labeled by the lower

number of Wilson lines k = 1, . . . , 4 can be cast into the general form

f(τ) = fk
0 θ

(8−k)
0 + · · · fk

k θ
(8−k)
k , (4.11)

where

θ
(k)
J :=

∑

j1=0,1
...

jk−1=0,...k−1

ϑ[
j1
2
0 ](2·)ϑ[

j2
3
−

j1
2

0
](6·) · · · ϑ[

jk−1
k

−
jk−2
k−1

0
]((k−1) · k)ϑ[

J
(k+1)

−
jk−1

k

0
](k · (k+1)),

(4.12)

and

fk
J = q

− kJ2

2(k+1)

∑

p∈ΓE8
(p,α1)=···=(p,αk−1)=0

(p,αk)=J

q
p2

2 . (4.13)

For the chains of models in [8], we find the explicit expressions

fk
J =

∑

a,b=0,1

ϑ[
a/2+J/(k+1)

b/2 ]((k + 1)·)ϑ[
a/2
b/2 ](7−k)(−1)b·J (4.14)
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for k even and

fk
J =

∑

a,b=0,1

ϑ[
a/2+J/(k+1)

0 ]((k + 1)·)ϑ[
a/2
b/2 ](7−k)(−1)b·J (4.15)

for k odd.

We can write down the same decompositions including the shifts due to the orbifold

embedding. In the chains of models in [8], the shifts are of the form γ = (α1 + 2α2 + · · ·+
mαm) and thus deform p to p + aγ = (n1 + a)α1 + (n2 + 2a)α2 + · · · + (nm + m · a)αj .

Therefore, θ
(k)
J gets deformed to

θ
(k)
J,γ [ab ](q) =

∑

j1=0,1
...

jk−1=0,...k−1

ϑ[
j1
2
0 ](2·)ϑ[

j2
3
−

j1
2

0
](6·) · · · ϑ[

jm
(m+1)

−
jm−1

m
−m·a

−m(m+1)b
](m·(m+1)) · · · ϑ[

J
(k+1)

−
jk−1

k

0
](k ·(k+1)).

(4.16)

Similar realizations exist for other types of shifts. On the part of the lattice denoted by

fk
J , it is more convenient to write in an orthogonal basis γ = (γ1, . . . , γ7−k, 0, . . . , 0) and

we get for fk
J with k even

fk
J,γ [ab ] =

∑

A,B=0,1

e−πi
P

i γiBaϑ[
A/2+J/(k+1)

B/2 ]((k + 1)·)
7−k∏

i=1

ϑ[
A/2+aγi

B/2+bγi
](−1)B·J , (4.17)

respectively for k odd,

fk
J,γ [ab ] =

∑

A,B=0,1

e−πi
P

i γiBaϑ[
A/2+J/(k+1)

0 ]((k + 1)·)
7−k∏

i=1

ϑ[
A/2+aγi

B/2+bγi
](−1)B·J . (4.18)

Cases with more than 7 − k non-vanishing entries in γ have to be considered separately,

see section 4.2.

The lattice splits derived above are the main ingredients for computing the F (g) in

models with Wilson lines. Indeed, turning on one Wilson line in the chains of [8] corresponds

to preserving a U(1) that can be enhanced to an SU(2) while Higgsing an E7, and will

therefore be reflected by a split as in (4.1). On the other hand, turning on seven Wilson

lines Higgses an SU(2) while preserving a U(1)7 that can be enhanced to E7 and therefore

corresponds to the same split with sides exchanged, or equivalently: the same modified

Dynkin diagram (figure 3) with circles replaced by crosses. Similarly, (4.6) corresponds to

2, respectively 6 and (4.8) to 3, respectively 5 Wilson lines. For 4 Wilson lines, one can

choose to Higgs either side of the lattice.

4.2 Moduli dependence

We can now use the above to decompose the full lattice sum with torus moduli, Wilson

moduli, shifts and insertions. Note that when the vector of Wilson line moduli y is not

orthogonal to the shifts, i.e. γ · y 6= 0, we turn on Wilson line moduli corresponding to the
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Figure 6: E8 with 5 Wilson lines
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Figure 7: E8 with 4 Wilson lines
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Figure 8: E8 with 4 Wilson lines, alternative split
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Figure 9: E8 with 3 Wilson lines

part of the gauge group only present in the orbifold limit. This results in freezing the vector

moduli at that special point of moduli space, and the degeneracy of vacua gets lifted: The

couplings corresponding to equivalent embeddings with different N can be different [17].

We therefore impose here γ · y = 0, restricting the Wilson lines to the part of the

lattice orthogonal to the shift. We have to distinguish the cases of less than four Wilson

lines from those with four and more. In the latter, γ ·y = 0 is automatically fulfilled for the

shifts given in table 1, as the Wilson lines are active on the right-hand side of the Dynkin

diagram while the shifts act on the left. If we turn on less than four Wilson lines, those

are active on the left-hand side of the diagram, as explained in section 4.1. This means

that we have to choose the shift such that it does not interfere with the Wilson lines, and

in such a way that it preserves the part of the diagram where the Wilson lines are active.

For the Z2, Z3 and Z4 embeddings on the first E8 lattice (see table 1), it is sufficient to

move the shift to the other end of the diagram, redefining γ1
Z2

→ γ′1
Z2

= (06,−1, 1), γ1
Z3

→
γ′1

Z3
= (05,−2, 1, 1), γZ4 → γ′1

Z4
= (04,−3, 1, 1, 1). In the case of the Z6 orbifold, this does

the trick for one and two Wilson lines, but if we turn on a third one, it is not orthogonal

to γ′1
Z6

anymore. However, we can choose the equivalent embedding γ′1 = (2, 2, 2, 2, 2, 03),

orthogonal to y ∈ span(α1, α2, α3). In this case, this is also a valid choice for zero, one
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and two Wilson lines. The Wilson lines on the second E8, unchanged throughout the

sequential Higgs mechanisms, work out similarly. Only the Z4 orbifold is slightly more

delicate, as the Wilson lines corresponding to maximal Higgsing on the second E8 preserve

an SO(8), and therefore act in the center of the diagram. The combination of theta

functions corresponding to the Higgsed lattice can however be determined using (4.13).

For one Wilson line, we thus write

∑

p∈Γ18,2+aγ

p
(2g−2)
R q

|pL|2

2 q̄
|pR|2

2 e2πibγ·p =
∑

p∈Γ18,2+aγ

(p · u(y))(2g−2)q
p2

2 |q|(p·u(y))2e2πibγ·p

=
∑

J=0,1

∑

A,B∈{0,1}
α,β∈{0,1}

e−πi
P

i γ′
iBa

(
8∏

i=3

ϑ[
A/2+aγ′

i

B/2+bγ′
i
]

)

ϑ[
A/2+J/2

0 ](2·)(−1)BJ

· e−πia
P16

i=9 γiβ




16∏

j=9

ϑ[
α/2+aγj

β/2+bγj
]



 ·
∑

n1,n±,m±

(p · u(y))2g−2q(n1−
J
2
)2−m+n−+n0m0 |q|(p·u(y))2

=
∑

J

f1
J [ab ](q)Θ̄

g
J,1(q, y),

(4.19)

where Θg
J,k(q, y) is defined in (3.23), and

f1
J [ab ](q) =

∑

A,B∈{0,1}
α,β∈{0,1}

e−πia
P8

i=3 γ′
iB

(
8∏

i=3

ϑ[
A/2+aγ′

i

B/2+bγ′
i
]

)

ϑ[
A/2+J/2

0 ](2·)(−1)BJ

· e−πia
P16

i=9 γiβ




16∏

j=9

ϑ[
α/2+aγj

β/2+bγj
]



 .

(4.20)

This is nothing else than (4.18) applied to the whole lattice of two E8 and the torus, and

including the shifts. Analogously, we get for k ≤ 4 Wilson lines

∑

p∈Γ18,2+aγ

p
(2g−2)
R q

|pL|2

2 q̄
|pR|2

2 e2πibγ·p =
∑

J

fk
J [ab ](q)Θ̄

g
J,k(q, y), (4.21)

where for k=3

f3
J [ab ](q) =

∑

A,B∈{0,1}
α,β∈{0,1}

e−πia
P8

i=5 γ′
iB

(
8∏

i=5

ϑ[
A/2+aγ′

i

B/2+bγ′
i
]

)
ϑ[

A/2+J/4
0 ](4·)(−1)BJ

e−πia
P16

i=9 γiβ




16∏

j=9

ϑ[
α/2+aγj

β/2+bγj
]



 ,

(4.22)
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and for k = 2 or k = 4 Wilson lines, using (4.17),

fk
J [ab ](q) =

∑

A,B∈{0,1}
α,β∈{0,1}

e−πia
P8

i=k+2 γiB

(
8∏

i=k+2

ϑ[
A/2+aγ′

i

B/2+bγ′
i
]

)

ϑ[
A/2+J/(k+1)
B/2 ]((k + 1)·)(−1)BJ

e−πia
P16

i=9 γiβ




16∏

j=9

ϑ[
α/2+aγj

β/2+bγj
]



 .

(4.23)

When more than four Wilson lines are turned on (k ≥ 4), we decompose analogously as

∑

p∈Γ18,2+aγ

p
(2g−2)
R q

|pL|2

2 q̄
|pR|2

2 e2πibγ·p =
∑

J

θk
J [ab ](q)Θ̄

g
J,k(q, y), (4.24)

where θk
J [ab ](q) is (4.16), supplemented by the contribution from the second E8 lattice.

Any other split for any number of Wilson lines fulfilling the constraint γ · y = 0

can be realized similarly. In the above, we have assumed that the second E8 lattice is

Higgsed completely, without any Wilson lines. If this is not the case, as for example for the

Z2, Z3 and Z4 models in [8], the second lattice also has to be split according to the above

prescription.

Note that these splits describe a “generalized hatting procedure” analogous to the 1-

Wilson line case analyzed in [12] for generalized Jacobi forms. In the 1 Wilson line STUV

model, the relevant forms are standard Jacobi forms

f(τ, V ) =
∑

n≥0
l∈Z

c(4n − l2)qnrl (4.25)

with q = e2πiτ , r = e2πV , admitting a decomposition

f(τ, V ) = fev(τ)θev(τ, V ) + fodd(τ)θodd(τ, V ), (4.26)

where θev = θ3(2τ, 2V ), θodd = θ2(2τ, 2V ). The effect of turning on a Wilson line can be

described by replacing f(τ, V ) by its hatted counterpart [12]

f̂(τ, V ) = fev(τ) + fodd(τ) (4.27)

In the generic, k Wilson line case considered here, we decompose the lattice sum as in (4.11).

When k ≤ 4, the “generalized hatting” due to the Wilson lines is

f̂ [ab ](τ, V1, . . . Vk) = fk
0 [ab ](τ) + · · · fk

k [ab ](τ), (4.28)

where fk
J and fk

k+1−J are equivalent. When k ≥ 4, we have to keep the other part of the

split lattice. This yields the “complementary hatting”

f̆(τ, V1, . . . Vn) = θ8−k
0 [ab ](τ) + · · · θ8−k

k [ab ](τ), (4.29)

with θ8−k
J = θ8−k

k+1−J .
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4.3 Computation of F (g)

In the following, we will denote the number of Wilson lines by k and write the split lattice

sum as ∑

J

Φk
J [ab ](q)Θ̄

g
k,J(q), (4.30)

where Φk
J [ab ](q) is the function appearing in (3.22) and stands for fk

J [ab ] or θk
J [ab ](q), whichever

is applicable. We expand the modular function in the integrand of (3.22) as

P2g(q)Fk
J (q) := P2g(q)

∑

a,b

c(a, b)e2πiab(2−γ2)

η18ϑ[1+a
1+b ]ϑ[1−a

1−b ]
Φk

J [ab ](q) =
∑

n∈QJ

ck
g,J(n)qn, (4.31)

where QJ denotes the subset of Q containing the powers of q appearing in the conjugacy

class J . Since different conjugacy classes correspond to different rational powers of q, we

can sum over J without loss of information and write

∑

n∈Q

ck
g(n)qn =

∑

J

∑

n∈QJ

ck
g,J(n)qn. (4.32)

We can now evaluate the integral (3.14) using Borcherds’ technique of lattice reduction [13]

reviewed in appendix B. We choose the reduction vector to lie in the torus part of the

lattice, the result is therefore only valid in the chamber of the T,U torus moduli space

where the projected reduction vector z+ is small. The result looks very similar to what

was obtained in [5] for the STU-model and can be simplified to read1 F (g) = F
(g)
deg +F

(g)
nondeg

where

F
(g)
deg =

(y2, y2)8π
3

T2
δg,1+

1

2(2T2)2g−3

∑

λ∈Γk,0

g∑

l=0

Li2l−2g+4(q
Re (λ̄·ȳ))ck

g−l

(
λ2

2

)
1

π2l+3

(
− T 2

2

2y2
2

)l

(4.33)

F
(g)
nondeg =

g−1∑

l=0

min
(l,2g−3−l)∑

C=0

∑

r∈Γk+1,1

(
2g − l − 3

C

)
1

(l − C)!2C

(−Re (r · y))l−C

(y2, y2)l
ck
g−l

(
r2

2

)
Li3−2g+l+C(e−r·y)

+
ck
1(0)

2g(g − 1)(y2, y2)g−1
+

g−2∑

l=0

ck
g−l(0)

l!(2(y2, y2))l
ζ(3 + 2(l − g))

(2g − 3 − l)!

(2g − 3 − 2l)!

(4.34)

This can also be compared to the expressions obtained in [17] for genus one. The lattice

sum in (4.34) is over the so-called reduced lattice Γk+1,1. This is a sublattice of the original

lattice Γk+2,2, parametrized by (n0,m0, bi).

A highly nontrivial check of the computation is provided by the Euler characteristics of

the corresponding Calabi-Yau manifolds, respectively the difference nh−nv on the heterotic

side. Heterotic-type II duality implies [5] that it should be given by the normalized q0

1see the appendix of [25] for details of the simplification
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Z2 92 132 168 200 304 412 612 960

Z3 120 144 164 232 312 420 624

Z4 224 288 372 528

Z6 220 264 312 372 480

Table 4: Euler characteristics χ for the models in [8]

coefficient of Fk
J , namely

2(nh − nv) = χ(X) = 2
ck
0(0)

ck
0(−1)

. (4.35)

One indeed finds precisely the chains of Euler characteristics given in [8], see table 4. The

corresponding K3-fibrations are listed in table 11.

5. Heterotic-type II duality and instanton counting

5.1 Moduli map

In this section, we will determine geometric quantities on the dual Calabi-Yau manifolds

on the type II side using the heterotic expressions obtained above.

The heterotic dilaton S gets mapped to the Kähler modulus t2, therefore heterotic weak

coupling regime corresponds to t2 → ∞. This restricts the instanton numbers accessible to

our computation to those classes where the corresponding coefficient l2 vanishes. The map-

ping of the remaining heterotic moduli from the Torus and the Wilson lines (T,U, V1, . . . Vk)

to the Kähler moduli (t1, . . . tk+3) on the type II side can be determined for models with

small number of Kähler moduli comparing the classical pieces of the prepotential [12]. In

order to compare with the instanton numbers in [14], we extend the map of [12] to two

Wilson lines as follows:

T → t1 + 2t4 + 3t5

U → t1 + t3 + 2t4 + 3t5

V1 → t4

V2 → t5

(5.1)

implying that the numbers (n0,m0, bi) in (3.5) map to the numbers li on the type II side as

l1 = n0 + m0 l4 = 2(n0 + m0) + b1

l2 = 0 l5 = 3(n0 + m0) + b2

l3 = n0.

(5.2)

For higher numbers of Wilson lines, we cannot conclusively determine the map due to lack

of information on the type II side, but it is clear that such a map exists and that it is

linear. In order to extract genus g instanton numbers from the expansion (4.31), we have
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k p2
het

0 n0m0

1 n0m0− b21
4

2 n0m0−b2
1+b1b2− b22

3

3 n0m0−b2
1−b2

2+b1b2+b2b3− 3b23
8

4 n0m0−b2
1−b2

2−b2
3+b1b2+b2b3+b3b4− 2b24

5

5 n0m0− 5b24
8 −b2

5−b2
6−b2

7−b2
8+b4b5+b5b6+b5b8+b6b7+b7b8

6 n0m0− 2b23
3 −b2

4−b2
5−b2

6−b2
7−b2

8+b3b4+b4b5+b5b6+b5b8+b6b7+b7b8

7 n0m0− 3b22
4 −b2

3−b2
4−b2

5−b2
6−b2

7−b2
8+b2b3+b3b4+b4b5+b5b6+b5b8+b6b7+b7b8

Table 5: The norm (phet, phet)k for k = (0, 1, . . . 7) Wilson lines

to specify the norm (p, p). Redefining the indices in (4.1)-(4.9) as

(
n1−

a

2

)2

→ b2
1

4
(

n1−
a

2

)2

+3

(
n2 +

a

2
− b

3

)2

→ b2
1

4
+ 3

(
b1

2
− b2

3

)2

= b2
1 − b1b2 +

b2
2

3
(

n1−
a

2

)2

+3

(
n2 +

a

2
− b

3

)2

+ 6

(
n2 +

b

3
− c

4

)2

→ b2
1

4
+ 3

(
b1

2
− b2

3

)2

+ 6

(
b2

3
− b3

4

)2

= b2
1 + b2

2 − b1b2 − b2b3 +
3b2

3

8
,

...
(5.3)

we find the norms given in table 5. We thus have for the instanton numbers

cg
k(n0,m0, b1, . . . bk) = cg

k

(
n0m0 − b2

1 − · · · − b2
k−1 + b1b2 · · · bk−1bk − kb2

k

2(k + 1)

)
, k ≤ 4

cg
k(n0,m0, b9−k, . . . b8) = cg

k

(
n0m0 −

(10 − k)b2
9−k

2(9 − k)
− b2

10−k − · · · − b2
8

+b9−kb10−k + · · · b5b8

)
, k ≥ 4, (5.4)

confirming the conjecture made in [12]. Note that the last bp determines the conjugacy

class.

5.2 Extracting geometric information

The topological couplings F (g) are the free energies of the A-model topological string. They

have a geometric interpretation as a sum over instanton sectors,

F (g)(t) =
∑

β

Ng,βQβ, (5.5)
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where Qi = e−ti , β = {ni} in a basis of H2(X) denotes a homology class, Qβ := e−tini , and

Ng,β are the Gromov-Witten invariants, in general rational numbers. With the work of

Gopakumar and Vafa [26], a hidden integrality structure of the Ng,β has been uncovered.

The generating functional of the F (g),

F (t, gs) =
∞∑

g=0

F (g)(t)g2g−2
s , (5.6)

can be written as a generalized index counting BPS states in the corresponding type IIA

theory:

F (t, gs) =
∑

g=0

∑

β

∞∑

d=1

ng
β

1

d

(
2 sin

dgs

2

)2g−2

Qdβ, (5.7)

where the numbers ng
β are now integers called Gopakumar-Vafa invariants. Since the

homology classes β are labeled by lattice vectors p, we write the Gopakumar-Vafa invariants

for models with k Wilson lines as nk
g(p) ≡ nk

g(
p2

2 ). We also write, in terms of the instanton

degrees on the type II side, nk
g(l1, . . . , lk+3).

From the structure of the F (g), one can deduce that the coefficients ck
g(

p2

2 ) appearing

in (4.33),(4.34) are related to the Gopakumar-Vafa invariants through

∑

g≥0

nk
g(p)

(
2 sin

λ

2

)2g−2

=
∑

g≥0

ck
g

(
p2

2

)
λ2g−2. (5.8)

The Gopakumar-Vafa invariants can be obtained efficiently using the formula [7]

∑

p∈Pic(K3)

∞∑

g=0

nk
g(p)zgq

p2

2 =
∑

J

Fk
J (q)ξ2(z, q), (5.9)

where Fk
J (q) is defined in (4.31), and

ξ(z, q) =
∞∏

n=1

(1 − qn)2

(1 − qn)2 + zqn
. (5.10)

5.3 Gopakumar-Vafa invariants

Table 6- table 8 show conjectural GV invariants nk
g for the K3 fibrations dual to the STU -,

the STUV -, and the STUV1V2-model. Similar tables for the other models considered in

this work can be found in appendix C, along with a list of the dual pairs of [8].

For comparison with [14], we give the genus 0 instanton numbers in notation

[l1 · · · lk+3] = nk
0(l1, . . . lk+3) for models with one and two Wilson lines in table 9, 10.

We find indeed perfect agreement with [14].

Another nontrivial check is provided by the requirement of consistent truncation:

in [14], the authors deduce that the following relations have to hold between instanton

numbers with 3,4,and 5 moduli

n0
0(l1, l2, l3) =

∑

x

n1
0(l1, l2, l3, x) n1

0(l1, l2, l3, l4) =
∑

x

n2
0(l1, l2, l3, l4, x). (5.11)
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g p2

2 = −1 0 1 2 3 4 5

0 -2 480 282888 17058560 477516780 8606976768 115311621680

1 0 4 -948 -568640 -35818260 -1059654720 -20219488840

2 0 0 -6 1408 856254 55723296 1718262980

3 0 0 0 8 -1860 -1145712 -76777780

4 0 0 0 0 -10 2304 1436990

Table 6: nk
g(p2

2
) for Z6, 0 Wilson lines (STU), dual to X1,1,2,8,12

g p2

2 = −1 −1
4 0 3

4 1 7
4 2 11

4 3

0 -2 56 372 53952 174240 3737736 9234496 110601280 237737328

1 0 0 4 -112 -732 -108240 -350696 -7799632 -19517380

2 0 0 0 0 -6 168 1084 162752 528582

3 0 0 0 0 0 0 8 -224 -1428

Table 7: Z6,1 Wilson line (STUV), dual to X1,1,2,6,10

g p2

2 = −1 −1
3 0 2

3 1 5
3 2 8

3 3

0 -2 30 312 26664 120852 1747986 5685200 49588776 135063180

1 0 0 4 -60 -612 -53508 -243560 -3656196 -12097980

2 0 0 0 0 -6 90 904 80472 367458

3 0 0 0 0 0 0 8 -120 -1188

4 0 0 0 0 0 0 0 0 -10

Table 8: Z6, 2 Wilson lines (STUV1V2), dual to X1,1,2,6,8

[0001] 56 [1001] 56 [1003] 56 [3014] 174240

[0002] -2 [1002] 372 [1000] -2 [1011] 56

[1004] -2 [2012] 372 [0003] 0 [2013] 53952

Table 9: Numbers of rational curves of degree [l1, 0, l2, l3, l4] on X1,1,2,6,10 (dual to Z6,1 WL)

[00001] 30 [10011] 30 [00002] 0 [10023] 312

[00010] -2 [10022] 30 [00012] 30 [10010] -2

[00023] -2 [20101] 26664 [00011] 30 [20169] 312

[00101] 0 [30141] 0 [00013] -2 [30144] 30

[30145] 26664 [30146] 120852 [30147] 26664 [30148] 30

Table 10: Numbers of rational curves of degree [l1, 0, l3, l4, l5] on X1,1,2,6,8 (dual to Z6, 2 WL)

Our numbers indeed fulfill this constraint, as for example

n2
0(0, 0, 0, 1, 0) + · · · + n2

0(0, 0, 0, 1, 3) = −2 + 30 + 30 − 2 = 56 = n1
0(0, 0, 0, 1), (5.12)

n1
0(0, 0, 0, 0) + · · · + n1

0(0, 0, 0, 4) = −2 + 56 + 372 + 56 − 2 = 480 = n0
0(0, 0, 0), (5.13)
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and

n2
0(3, 0, 1, 4, 0) + · · · + n2

0(3, 0, 1, 4, 8) = 174240 = n1
0(3, 0, 1, 4). (5.14)

This relation should also hold at higher genus and for higher numbers of Kähler moduli [6],

namely we expect

nk
g(l1, l2, . . . lk+3) =

∑

x

nk+1
g (l1, l2, . . . lk+3, x). (5.15)

Indeed, we have for example for truncation from 2 to 1 Wilson line (tables 7, 8) 4 − 60 −
60 + 4 = −112, −6 + 90 + 90− 6 = 168, and 90 + 904 + 90 = 1084. All instanton numbers

produced, including those in tables 12-25, fulfill the truncation identities

n0
g(1) = 2

(
n1

g(0)+n1
g

(
3

4

))
+n1

g(1) n0
g(2)=2

(
n1

g

(
− 1

4

)
+n1

g(1)+n1
g

(
7

4

))
+n1

g(2)

n1
g(1)=2

(
n2

g

(
− 1

3

)
+n2

g

(
2

3

))
+n2

g(1) n1
g(2)=2

(
n2

g(−1)+n2
g

(
2

3

)
+n2

g

(
5

3

))
+n2

g(2)

n2
g(1)=2

(
n3

g

(
− 1

2

)
+n3

g

(
5

8

))
+n3

g(1) n2
g(2)=2

(
n3

g

(
1

2

)
+n3

g

(
13

8

))
+n3

g(2)

n2
g

(
2

3

)
=n3

g

(
− 3

8

)
+n3

g(0)+n3
g

(
1

2

)
+n3

g

(
5

8

)
n3

g(0)=n4
g

(
− 2

5

)
+n4

g(0).

(5.16)

Note that these identities hold –as far as we can verify– at general genus and independently

of the specific chain, as expected. Again, this provides a non-trivial check of our results.

6. Conclusion

We have shown how to compute higher derivative couplings for general symmetric ZN ,

N = 2 orbifold compactifications of the heterotic string with any number of Wilson lines.

In particular, this provides conjectural instanton numbers for any of the models in the

chains of heterotic-type II duals of [8].

Unfortunately, our results can so far only be checked for up to two Wilson lines, since

for higher numbers of vector multiplets the type II computation becomes very involved.

They do however fulfill nontrivial constraints coming from the geometric transitions on the

type II side [14].

Furthermore, a rigorous mathematical framework for computing Gromov-Witten in-

variants along the fiber of certain K3-fibrations has been established in [29, 30]. With

these techniques, one might be able to prove some of our physical predictions for Calabi-

Yau manifolds of this type.

The computation is rather general and might be applicable to other models, e.g. to

asymmetric orbifolds.
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A. Theta functions

Properties. In our conventions, the theta functions are defined as follows:

ϑ[ab ](v|τ) =
∑

n∈Z

q
1
2
(n−a)2e2πi(v−b)(n−a) (A.1)

where a, b are rational numbers and q = e2πiτ .

They show the following periodicity properties:

ϑ[a+1
b ](v|τ) = ϑ[ab ](v|τ) , ϑ[ a

b+1](v|τ) = e2iπaϑ[ab ](v|τ) , (A.2)

ϑ[−a
−b ](v|τ) = ϑ[ab ](−v|τ) , ϑ[ab ](−v|τ) = e4iπabϑ[ab ](v|τ) (a, b ∈ Z) . (A.3)

We will use a modified Jacobi/Erderlyi notation where ϑ1 = ϑ[
1/2
1/2], ϑ2 = ϑ[

1/2
0 ], ϑ3 =

ϑ[00], ϑ4 = ϑ[01/2].

Under modular transformations, the theta functions transform according to

ϑ[ab ](v|τ + 1) = e−iπa(a−1) ϑ[ a
a+b−1/2](v|τ) , (A.4)

ϑ[ab ]

(
v

τ
| − 1

τ

)
=

√
−iτ e2iπab+iπ v2

τ ϑ[ b
−a](v|τ) . (A.5)

The Dedekind η-function of weight 1
2 is related to the v-derivative of ϑ1:

η(τ) = q
1
24

∞∏

n=1

(1 − qn), (A.6)

∂

∂v
ϑ1(v)|v=0 ≡ ϑ′

1 = 2πη3(τ). (A.7)

We can always set the variable v to zero by changing the shifts (a, b) appropriately:

ϑ[ab ] (v + ǫ1τ + ǫ2|τ) = e−iπτǫ21−iπǫ1(2v−b)−2iπǫ1ǫ2 ϑ[a−ǫ1
b−ǫ2

](v|τ) . (A.8)

In our conventions, we will systematically use shifts rather than the variable v.

We also note the following identities

ϑ2(0|τ)ϑ3(0|τ)ϑ4(0|τ) = 2 η3 , (A.9)

ϑ4
2(v|τ) − ϑ4

1(v|τ) = ϑ4
3(v|τ) − ϑ4

4(v|τ) , (A.10)

We have the following identities for the derivatives of ϑ-functions

∂τ

(
ϑ2

η

)
=

iπ

12η

(
ϑ4

3 + ϑ4
4

)
(A.11)

∂τ

(
ϑ3

η

)
=

iπ

12η

(
ϑ4

2 − ϑ4
4

)
(A.12)

∂τ

(
ϑ4

η

)
=

iπ

12η

(
−ϑ4

2 − ϑ4
3

)
(A.13)
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Note that the above is valid for all rational values of a,b,h,g. The case h, g ∈ {0, 1/2}can
be seen as a special case, relevant for Z2-orbifolds, while h, g ∈ {0, 1/n, . . . (n− 1)/n} arise

in the Zn-case (see, e.g., [27] or [28]).

We also use the short-hand notation

ϑ[ab ](τ) := ϑ[ab ](0|τ) (A.14)

as well as

ϑ[ab ](m·) := ϑ[ab ](0|mτ) (A.15)

Eisenstein series. The Eisenstein series E2n are defined as

E2n = 1 − 4n

B2n

∑

k≥1

k2n−1qk

1 − qk
. (A.16)

E2n with n > 1 are holomorphic modular forms of weight 2n. The Eisenstein series E2 is

often called quasi modular since under modular transformations, it transforms with a shift

E2

(
− 1

τ

)
= τ2

(
E2(τ) +

6

πiτ

)
. (A.17)

Adding a term that compensates this shift yields the modular, but only “almost holomor-

phic” form of weight two Ê2

Ê2 = E2 −
3

πτ2
. (A.18)

The ring of almost holomorphic modular forms is generated by Ê2 and the next two Eisen-

stein series

E4 = 1 + 240
∑

k≥1

k3qk

1 − qk
=

1

2

∑

a,b

ϑ[ab ]
8

E6 = 1 − 504
∑

k≥1

k5qk

1 − qk
.

(A.19)

Lie algebra lattice sums. Any shifted lattice sum over E8 can be written in terms of

theta functions as

∑

p∈ΓE8
+aγ

q
p2

2 e2πibp·γ =
∑

α,β

8∏

i=1

ϑ[α+aγi

β+bγi
]e−πi

P
i γiβa (A.20)

In particular,

E4 =
1

2

∑

p∈ΓE8

q
p2

2 (A.21)

and E6 is related to the E8 lattice shifted by any modular invariant embedding γ

E6 =
∑

(a,b)6=(0,0)

c(a, b)

2ϑ[
1
2
+a

1
2
+b

]ϑ[
1
2
−a

1
2
−b

]

∑

p∈ΓE8
+aγ

q
p2

2 e2πibp·γ , (A.22)
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with c(a, b) as defined in section 3.

An obvious generalization of (A.20) is the modified Siegel-Narain Theta function over a

general shifted lattice Γ of signature (b+, b−) with an insertion of (pR)2g−2

Θg
Γ(τ, γ, a, b) =

∑

p∈Γ+aγ

(pR)2g−2q
|pL|2

2 q̄
|pR|2

2 e2πibγ·p. (A.23)

We also use the notation

ΘΓ(τ, γ1, γ2;P, φ) =
∑

p∈Γ+γ1

exp

(
− ∆

8πτ2

)
φ(P (p))q

|pL |2

2 q̄
|pR|2

2 e2πiγ2·p, (A.24)

where γ1, γ2 are shifts, P is an isometry from Γ × R to Rb+,b− , φ is a polynomial on

Rb+,b− of degree m+ in the first b+ variables and of degree m− in the others, and ∆ is

the Euclidean Laplacian on Rb+,b− . The isometry P defines projections on R+, R− written

as P+(p) = pR, P−(p) = pL. We will here only consider cases where the shifts are

proportional, γ1 = aγ ∼ γ2 = bγ.

B. Lattice reduction

In [13], Borcherds developed the technique of lattice reduction to compute integrals of the

form

ΦΓ =

∫

F

d2τ

τ2
2

FM (τ)ΘM (τ, γ1, γ2;P, φ), (B.1)

where M is a lattice of signature (b+, b−), ΘM (τ, γ1, γ2;P, φ) is the generalized Siegel theta

function with projection P and polynomial insertion φ as defined in appendix A and FM

is a (quasi) modular form of weight (− b−

2 −m−,− b+

2 −m+) that can be constructed from

a (quasi) modular form F with weights ( b+

2 + m+ − b−

2 − m−, 0) as FM = τ
b+

2
+m+

2 F .

The integral (B.1) can be decomposed into a sum over a reduced lattice K of signature

(b+ − 1, b− − 1) and a new integral ΦK involving K instead of M ([13], Theorem 7.1).

Iterating this procedure, on arrives at an integral ΦKf
with a lattice Kf of signature

(b+−b−, 0) respectively (0, b−−b+) that can in principle be solved using standard methods.

The reduction steps proceed as follows. Choose two vectors z, z′ in M with z primitive

and (z, z) = 0, (z, z′) = 1. The reduced lattice is then defined as K = M ∩ z⊥

Zz
. We also

define reduced projections P̃ in a natural way:

P̃±(λ) = P±(λ) − (P±(λ), z±)

z2
±

z±. (B.2)

We can then expand the polynomial φ in terms of (λ, z±) as

φ(P (λ)) =
∑

h+,h−

= (λ, z+)h
+
(λ, z−)h

−
φh+,h−(P̃ (λ)). (B.3)
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Type Group (nh, nv) CY weights

Z2, 3 + 8 WL SU(4) × E′
8 × U(1)4 (167, 15) (1, 1, 12, 16, 18, 20)

Z2, 2 + 8 WL SU(3) × E′
8 × U(1)4 (230, 14) (1, 1, 12, 16, 18)

Z2, 1 + 8 WL SU(2) × E′
8 × U(1)4 (319, 13) (1, 1, 12, 16, 30)

Z2, 0 + 8 WL E′
8 × U(1)4 (492, 12) (1, 1, 12, 28, 42)

Z3, 3 + 6 WL SU(4) × E′
6 × U(1)4 (129, 13) (1, 1, 6, 10, 12, 14)

Z3, 2 + 6 WL SU(3) × E′
6 × U(1)4 (168, 12) (1, 1, 6, 10, 12)

Z3, 1 + 6 WL SU(2) × E′
6 × U(1)4 (221, 11) (1, 1, 6, 10, 18)

Z3, 0 + 6 WL E′
6 × U(1)4 (322, 10) (1, 1, 6, 16, 24)

Z4, 3 + 4 WL SU(4) × SO(8)′ × U(1)4 (123, 11) (1, 1, 4, 8, 10, 12)

Z4, 2 + 4 WL SU(3) × SO(8)′ × U(1)4 (154, 10) (1, 1, 4, 8, 10)

Z4, 1 + 4 WL SU(2) × SO(8)′ × U(1)4 (195, 9) (1, 1, 4, 8, 14)

Z4, 0 + 4 WL SO(8)′ × U(1)4 (272, 8) (1, 1, 4, 12, 18)

Z6, 3 + 0 WL SU(4) × E′
6 × U(1)4 (139, 7) (1, 1, 2, 6, 8, 10)

Z6, 2 + 0 WL SU(3) × E′
6 × U(1)4 (162, 6) (1, 1, 2, 6, 8)

Z6, 1 + 0 WL SU(2) × E′
6 × U(1)4 (191, 5) (1, 1, 2, 6, 10)

Z6, 0 + 0 WL E′
6 × U(1)4 (244, 4) (1, 1, 2, 8, 12)

Table 11: The chains of heterotic-type II duals studied in [8]

The statement of Borcherds’ theorem is then that with these conventions, z2
+ sufficiently

small and P̃+(λK) 6= 0, ΦM is given by

√
2

|z+|
∑

h≥0

∑

h+,h−

h!(−z2
+/π)h

(2i)h++h−

(
h+

h

)(
h−

h

)∑

j

∑

λK∈K

(−∆)j(φ̄h+,h−)(P̃ (λ))

(8π)jj!

·
∑

l,t

q
l(λK ,(−z′+

z+

2z2
+

+
z−

2z2
−

))
c(λ2

K , t)lh
++h−−2h

(
l

2|z+||P̃+(λK)|

)h−h+−h−−j−t+ b+

2
+m+−3/2

Kh−h+−h−−j−t−b+/2+m+−3/2

(
2πl|P̃+(λK)|

|z+|

)

.

(B.4)

For P̃+(λ) = 0, the last two factors have to be replaced by the analytic continuation at

ǫ = 0 of (
πl2

2z2
+

)h−h+−h−−j−t+b+/2+m+−3/2−ǫ

· Γ(−h + h+ + h− + j + t − b+/2 − m+ + 3/2 + ǫ).

(B.5)

C. Instanton tables and heterotic-type II duals

Table 11 lists the dual K3-fibrations for the ZN -orbifolds defined in table 1 [8].

Tables 12–25 give instanton numbers at g = 0, . . . 4 for the Z2,3,4,6 orbifolds defined in

table 1.
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g p2

2 = −1 0 1 2 3 4 5 6

0 -2 960 56808 1364480 20920140 240357888 2244734960 17884219392

1 0 4 -1908 -119360 -3077460 -50495040 -617959240 -6118785792

2 0 0 -6 2848 185694 5045376 87240260 1122823296

3 0 0 0 8 -3780 -255792 -7276660 -131766240

4 0 0 0 0 -10 4704 329630 9782592

Table 12: Z2, 8 Wilson lines, dual to X1,1,12,28,42

g p2

2 = −1 −1
4 0 3

4 1 7
4 2 11

4 3 15
4

0 -2 176 612 12672 30240 320976 661696 5031040 9509328 58372272

1 0 0 4 -352 -1212 -26400 -64136 -719392 -1509700 -12091776

2 0 0 0 0 -6 528 1804 40832 100422 1173600

3 0 0 0 0 0 0 8 -704 -2388 -55968

4 0 0 0 0 0 0 0 0 -10 880

Table 13: Z2, 8+1 Wilson lines, dual to X1,1,12,16,30

g p2

2 = −1 −1
3 0 2

3 1 5
3 2 8

3 3 11
3

0 -2 90 432 5904 18252 142146 365600 2144016 4936140 24107760

1 0 0 4 -180 -852 -12348 -39080 -320436 -844140 -5189400

2 0 0 0 0 -6 270 1264 19152 61578 524952

3 0 0 0 0 0 0 8 -360 -1668 -26316

4 0 0 0 0 0 0 0 0 -10 450

Table 14: Z2, 8+2 Wilson lines, dual to X1,1,12,16,30

g p2

2 = −1 −1
2 −3

8 0 1
2

5
8 1 3

2
13
8 2 5

2

0 -2 28 64 304 2144 3392 11412 52144 75136 211040 781312

1 0 0 0 4 -56 -128 -596 -4456 -7168 -24632 -117376

2 0 0 0 0 0 0 -6 84 192 880 6880

3 0 0 0 0 0 0 0 0 0 8 -112

Table 15: Z2, 8+3 Wilson lines, dual to X1,1,12,16,18

g p2

2 = −1 −3
5 −2

5 0 2
5

3
5 1 7

5
8
5 2 12

5

0 -2 14 52 200 1020 2158 7068 23916 43080 122840 347376

1 0 0 0 4 -28 -104 -388 -2124 -4628 -15320 -54064

2 0 0 0 0 0 0 -6 42 156 568 3284

3 0 0 0 0 0 0 0 0 0 8 -56

Table 16: Z2, 8+4 Wilson lines, dual to X1,1,12,16,18,20
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g p2

2 = −1 −1
2 −3

8 0 1
2

5
8 1 3

2
13
8 2

0 -2 8 24 264 9104 17272 86292 634464 1009936 3647120

1 0 0 0 4 -16 -48 -516 -18256 -34688 -174152

2 0 0 0 0 0 0 -6 72 760 27440

3 0 0 0 0 0 0 0 0 0 8

Table 17: Z6, 3 Wilson lines, dual to X1,1,2,6,8,10

g p2

2 = −1 0 1 2 3 4 5 6

0 -2 624 54792 1609088 28265184 360251424 3659578208 31296575232

1 0 4 -1236 -113312 -3551892 -66631944 -903741184 -9729986112

2 0 0 -6 1840 174270 5731824 113066144 1610777952

3 0 0 0 8 -2436 -237648 -8154292 -168125136

4 0 0 0 0 -10 3024 303422 10826544

Table 18: Z3, 6 Wilson lines, dual to X1,1,6,16,24

g p2

2 = −1 −1
4 0 3

4 1 7
4 2 11

4 3

0 -2 104 420 11856 30240 373464 801472 6750016 13138500

1 0 0 4 -208 -828 -24336 -62984 -818896 -1787716

2 0 0 0 0 -6 312 1228 37232 97350

3 0 0 0 0 0 0 8 -416 -1620

Table 19: Z3, 6+1 Wilson lines, dual to X1,1,6,10,18

g p2

2 = −1 −1
3 0 2

3 1 5
3 2 8

3 3

0 -2 54 312 5616 18900 167778 454688 2914704 6972912

1 0 0 4 -108 -612 -11556 -39656 -369684 -1025244

2 0 0 0 0 -6 162 904 17712 61602

3 0 0 0 0 0 0 8 -216 -1188

Table 20: Z3, 6+2 Wilson lines, dual to X1,1,6,10,12

g p2

2 = −1 −1
2 −3

8 0 1
2

5
8 1 3

2
13
8 2 5

2

0 -2 16 40 232 2024 3320 12228 61600 90592 269456 1065784

1 0 0 0 4 -32 -80 -452 -4144 -6880 -25832 -135472

2 0 0 0 0 0 0 -6 48 120 664 6328

3 0 0 0 0 0 0 0 0 0 8 -64

Table 21: Z3, 6+3 Wilson lines, dual to X1,1,6,10,12
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g p2

2 = −1 0 1 2 3 4 5

0 -2 528 90036 3679520 80559180 1212246784 14073864648

1 0 4 -1044 -183224 -7903452 -183923136 -2938551600

2 0 0 -6 1552 278466 12502704 304651808

3 0 0 0 8 -2052 -375744 -17481820

4 0 0 0 0 -10 2544 475034

Table 22: Z4, 4 Wilson lines, dual to X1,1,4,12,18

g p2

2 = −1 −1
4 0 3

4 1 7
4 2 11

4 3

0 -2 80 372 18432 52428 832848 1908808 18982912 38738880

1 0 0 4 -160 -732 -37344 -107072 -1776928 -4135132

2 0 0 0 0 -6 240 1084 56576 163146

3 0 0 0 0 0 0 8 -320 -1428

Table 23: Z4, 4+1 Wilson lines, dual to X1,1,4,8,14

g p2

2 = −1 −1
3 0 2

3 1 5
3 2 8

3 3

0 -2 42 288 8928 34488 381894 1127168 8355360 21263796

1 0 0 4 -84 -564 -18108 -70688 -817692 -2463540

2 0 0 0 0 -6 126 832 27456 107982

3 0 0 0 0 0 0 8 -168 -1092

Table 24: Z4, 4+2 Wilson lines, dual to X1,1,4,8,10

g p2

2 = −1 −1
2 −3

8 0 1
2

5
8 1 3

2
13
8 2 5

2

0 -2 12 32 224 3136 5536 23392 139688 213248 694400 3063424

1 0 0 0 4 -24 -64 -436 -6344 -11264 -48112 -298288

2 0 0 0 0 0 0 -6 36 96 640 9600

3 0 0 0 0 0 0 0 0 0 8 -48

Table 25: Z4, 4+3 Wilson lines, dual to X1,1,4,8,10,12
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